

Practical steering control for an autonomous docking based

Akihiro YAMANASHI Advancsd Smart Mobility Co., Ltd

Outline

- Background
- Motivation and Purpose
- Steering control
- Experiments
- Conclusions

Next Generation Urban Transportation System Concept

- ART: Advanced Rapid Transit -

Japanese government initiated a research project on automated driving systems under Cross-Miles (P).

ART will expand from the traditional limited operations to provide more transportation convenient service in advanced road transportation systems. Especially, automation of a high-precision docking to bus stop is required.

Experimental step and gap limit evaluation to establish wheelchair friendly conditions

Research subjects: 12-persons (6 male and 6 female)

Age-range: 20-60 years

Experimental verdict: Step value:3cm Gap value:6cm

EXPERIMENT IMAGE

WHEELCHAIR

ELECTRIC WHEELCHAIR

Estimate index							
\circ	Easy access						
\triangle	Requires some effort (reasonable)						
▼	Outer limit						
X	Assistance required						

1. The allowable step limit

Step value		MAN	Evaluation				
	Α	В	С	D	E	F	Lvaluation
6mm	\circ	\circ	0	\circ	\circ	0	\bigcirc
18mm	\circ	\circ	\circ	\circ	\circ	\circ	0
30mm	\triangle	\triangle	0		X	\triangle	\triangle
42mm	Χ	•	•	•	X	•	X

Step value		ELEC	Evaluation				
	Α	В	С	D	Е	F	Evaluation
6mm	0	0	0	0	\circ	\circ	0
18mm	0	\circ	\circ	\circ	\triangle	0	0
30mm	\triangle	0	\bigcirc	\bigcirc		0	0
42mm	X	▼	▼	▼	Χ	▼	X

2. The allowable gap limit

Gap value		MAN	Evaluation					
	Α	В	С	D	Е	F	Evaluation	
30mm	0	0	\circ	\circ	0	0	\circ	
45mm	0	0	0	0	0	0	0	
60mm		\bigcirc	\bigcirc	\bigcirc			\bigcirc	
75mm	▼	\circ	\circ	\blacksquare	▼	\triangle	▼	

Gap value		ELEC	Evaluation				
	Α	В	С	D	Е	F	Evaluation
30mm	0	\circ	0	\circ	0	\circ	0
45mm	0	0	0	0	\circ	0	0
60mm	△※	0					\circ
75mm	X:×	\circ	\circ	▼	▼	•	▼

Control System for Autonomous Docking

Lane Keeping for Automatic Steering

- In general, a camera foresees the lane marker.
- There are some driver model to control the vehicle position.
- It is difficult to see a marker in various situations: weather cond., close space.

 Another way is to see the lane marker in just side of the vehicle.

Control with Road white line

Since it is difficult to realize No.1,2, it is evaluated at No3

Test Bus and System Architecture

Experiments

- The operations of acceleration and deceleration are performed manually by a driver
- Only the steering is controlled
- The velocity of the truck is from 20 or 30 km/h to 0 km/h
- The controlled bus follows to the reference trajectory and the reference heading angle determined from the results of manual operation.
- The reference trajectories are three types

Reference trajectory Type1

6.0.03

-0.05

-0.015

The error to target is ± 0.02 m

-0.002

-0.02

Reference trajectory Type2

0.06 0.04

0.02

-0.02

-0.04

-0.06

0.06

0.04

0.02

-0.04

-0.06

-0.02

0.00

1回目

error to target [m]

0

The error to target is ± 0.02 m

0.01

4回目

0.005

5回目

0.00

平均

0.00

3回目

-0.015

2回目

Reference trajectory Type3

The error to target is ± 0.02 m

Rear door

Experimental Results

		Stopping Distance [cm]							
		Type of vehicle							
Reference trajectories		Bus	Articulated bus						
	Door position	Maximal value plus direction	Average (N=5)	Maximal value plus direction/minus direction	Average (N=5)				
	Front door	0/-2.0	-1.0	-1.1 / -4.0	-2.4				
Type 1	Central door			+2.0 / -0.2	1.0				
	Rear door	0/-2.7	-1.5	+4.9 / +1.8	3.8				
Type 2	Front door	+5.1/-0.5	2.5	+0.5 / -4.0	-1.4				
	Central door			+1.0 / -1.5	0.0				
	Rear door	+3.6/-2.4	0.8	+1.0 / -2.0	-0.2				
Type 3	Front door	+1.5/-4.0	-1.1	+2.0 / -2.0	-0.02				
	Central door			+2.0 / -2.5	0.03				
	Rear door	+3.5/-0.8	1.6	+1.5 / -4.0	-0.02				

Conclusions

- As experimental performance evaluation on autonomous precision docking, the method of the autonomous precision docking based on path following control was described.
- The effectiveness of the proposed method was evaluated by the experimental results.
- We confirm that the controlled truck docked with precision within about ± 0.05 m in the virtual reference trajectories of three types.

Thank you for your attention!

Advanced Smart Mobility Co., Ltd

Akihiro YAMANASHI

E-mail: a_yamanashi@as-mobi.com